已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.
某学校共有高一、高二、高三学生名,各年级男、女生人数如下图: 已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19. (Ⅰ)求的值; (Ⅱ)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名? (Ⅲ)已知,求高三年级中女生比男生多的概率.
已知集合, (1)若;(2)若,求实数的取值范围.
已知函数和函数, (1)证明:只要,无论b取何值,函数在定义域内不可能总为增函数; (2)在同一函数图象上任意取不同两点,线段AB的中点为,记直线AB的斜率为,①对于函数,求证:;②对于函数,是否具有与①同样的性质?证明你的结论.
已知是椭圆C:与圆F:的一个交点,且圆心F是椭圆的一个焦点,(1)求椭圆C的方程;(2)过F的直线交圆与P、Q两点,连AP、AQ分别交椭圆与M、N点,试问直线MN是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.
如图四棱锥,底面四边形ABCD满足条件,,侧面SAD垂直于底面ABCD,, (1)若SB上存在一点E,使得平面SAD,求的值; (2)求此四棱锥体积的最大值; (3)当体积最大时,求二面角A-SC-B大小的余弦值.