已知是定义在 [ – 1,1 ] 上的奇函数,且,若m,,时有.(1)用定义证明在 [ – 1,1 ] 上是增函数;(2)若成立,求a的取值范围.
(本小题满分14分)已知曲线在点处的切线斜率为(1)求的极值;(2)设在(-∞,1)上是增函数,求实数的取值范围;(3)若数列满足,求证:对一切
(本小题满分12分)在平面直角坐标系中有两定点,,若动点M满足,设动点M的轨迹为C。(1)求曲线C的方程;(2)设直线交曲线C于A、B两点,交直线于点D,若,证明:D为AB的中点。
(本小题满分12分)已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E、F分别为BC、PD的中点。(1)求证:PB//平面AFC;(2)求平面PAE与平面PCD所成锐二面角的余弦值。
(本小题满分12分)已知等差数列是递增数列,且满足(1)求数列的通项公式;(2)令,求数列的前项和
(本小题满分12分)已知集合(1)若;(2)若的充分条件,求实数的取值范围。