已知是定义在 [ – 1,1 ] 上的奇函数,且,若m,,时有.(1)用定义证明在 [ – 1,1 ] 上是增函数;(2)若成立,求a的取值范围.
如图,分别过椭圆E:左右焦点、的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.已知当l1与x轴重合时,,.(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标,若不存在,说明理由.
如图,四边形ABCD中,为正三角形,,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.(Ⅰ)求证:平面PBD;(Ⅱ)若已知二面角的余弦值为,求的大小.
数列是公比为的等比数列,且是与的等比中项,前项和为.数列 是等差数列,,前项和满足为常数,且.(Ⅰ)求数列的通项公式及的值;(Ⅱ)比较与的大小.
已知函数(R,,,)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且,,.(Ⅰ)求函数的解析式;(Ⅱ)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.
(本小题满分10分)已知数列满足且对任意,恒有(1) 求数列的通项公式;(2) 设区间中的整数个数为求数列的通项公式。