设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.(1)若λ=1,求数列的通项公式;(2)求λ的值,使数列是等差数列.
如图,,,…,,…是曲线上的点,,,…,,…是轴正半轴上的点,且,,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点). (1)写出、和之间的等量关系,以及、和之间的等量关系; (2)求证:(); (3)设,对所有,恒成立,求实数的取值范围.
设椭圆(常数)的左右焦点分别为,是直线上的两个动点,. (1)若,求的值; (2)求的最小值.
一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水千吨. (1)多少小时后,蓄水池存水量最少? (2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?
已知函数,. (1)设是函数的一个零点,求的值; (2)求函数的单调递增区间.
如图,在正四棱锥中,. (1)求该正四棱锥的体积; (2)设为侧棱的中点,求异面直线与 所成角的大小.