.已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由.(2)设,,若r>c>4,求证:对于一切n∈N*,不等式恒成立.
(本小题9分)已知复数,当实数为何值时,(1)为实数; (2)为虚数; (3)为纯虚数.
(本小题15分)已知函数。(I)当时,求曲线在点处的切线方程;(Ⅱ)当函数在区间上的最小值为时,求实数的值;(Ⅲ)若函数与的图象有三个不同的交点,求实数的取值范围。
(本小题13分)a,b,c均为实数,且,求证:中至少有一个大于0.
(本小题13分)实数m取什么值时,复数z=(m2-5m+6)+(m2-3m)是(1)实数?(2)虚数?(3)纯虚数?(4)表示复数z的点在第二象限?
(本小题11分) 已知,如果,求实数、的值