.已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由.(2)设,,若r>c>4,求证:对于一切n∈N*,不等式恒成立.
已知椭圆:的左、右焦点分别为,离心率为,点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆相交于两点,若的中点恰好为点,求直线的方程.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点. (Ⅰ)求证:平面; (Ⅱ)求证:平面.
(本小题14分)如图,已知,分别是椭圆的左、右焦点,过与轴垂直的直线交椭圆于点,且 (1)求椭圆的标准方程; (2)已知点,问是否存在直线与椭圆交于不同的两点,,且的垂直平分线恰好过点?若存在,求出直线斜率的取值范围;若不存在,请说明理由.
(本小题12分)已知抛物线与直线交于,两点. (1)求弦的长度; (2)若点在抛物线上,且的面积为,求点的坐标.
(本小题12分)等差数列中,,其前项和为. 等比数列的各项均为正数,,且,. (1)求数列与的通项公式; (2)求数列的前项和.