如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;
如图,已知 AB 是 ⊙ O 的直径, C 为 ⊙ O 上一点, ∠ OCB 的角平分线交 ⊙ O 于点 D , F 在直线 AB 上,且 DF ⊥ BC ,垂足为 E ,连接 AD 、 BD .
(1)求证: DF 是 ⊙ O 的切线;
(2)若 tan ∠ A = 1 2 , ⊙ O 的半径为3,求 EF 的长.
如图,已知 ΔABC 中, D 是 AC 的中点,过点 D 作 DE ⊥ AC 交 BC 于点 E ,过点 A 作 AF / / BC 交 DE 于点 F ,连接 AE 、 CF .
(1)求证:四边形 AECF 是菱形;
(2)若 CF = 2 , ∠ FAC = 30 ° , ∠ B = 45 ° ,求 AB 的长.
已知关于 x 的一元二次方程 x 2 - 4 x - 2 m + 5 = 0 有两个不相等的实数根.
(1)求实数 m 的取值范围;
(2)若该方程的两个根都是符号相同的整数,求整数 m 的值.
为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为 A 、 B 、 C 、 D 四个等级,并绘制了如下不完整的统计表和统计图.
等级
成绩 ( x )
人数
A
90 ⩽ x ⩽ 100
15
B
80 ⩽ x < 90
a
C
70 ⩽ x < 80
18
D
x < 70
7
根据图表信息,回答下列问题:
(1)表中 a = ;扇形统计图中, C 等级所占的百分比是 ; D 等级对应的扇形圆心角为 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为 A 等级的学生共有 人;
(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.
如图,抛物线 y = a x 2 + bx + c 交 x 轴于 A ( - 1 , 0 ) , B ( 3 , 0 ) 两点,交 y 轴于点 C ( 0 , - 3 ) ,点 Q 为线段 BC 上的动点.
(1)求抛物线的解析式;
(2)求 | QO | + | QA | 的最小值;
(3)过点 Q 作 PQ / / AC 交抛物线的第四象限部分于点 P ,连接 PA , PB ,记 ΔPAQ 与 ΔPBQ 面积分别为 S 1 , S 2 ,设 S = S 1 + S 2 ,求点 P 坐标,使得 S 最大,并求此最大值.