如图,四棱锥,底面是矩形,平面底面,,平面,且点在上.(1)求证:;(2)求三棱锥的体积;(3)设点在线段上,且满足,试在线段上确定一点,使得平面.
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.
已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=,b=.(1)求a和b的夹角θ;(2)若向量ka+b与ka-2b互相垂直,求k的值.
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).
设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:(1)函数f(x)在区间(0,1)是增函数;(2)an<an+1<1.
用数学归纳法证明不等式:>1(n∈N*且n>1).