(本小题满分13分)已知动点P到定点的距离和它到定直线的距离的比值为.(Ⅰ)求动点P的轨迹W的方程;(Ⅱ)若过点F的直线与点P的轨迹W相交于M,N两点(M,N均在y轴右侧),点、,设A,B,M,N四点构成的四边形的面积为S,求S的取值范围.
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为.(1)当时,求直路所在的直线方程;(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
已知函数(1)求函数的单调区间;(2)若函数的图像与直线恰有两个交点,求的取值范围.
设集合为函数的定义域,集合为函数的值域,集合为不等式的解集.(1)求;(2)若,求的取值范围.
已知函数().(I)若的定义域和值域均是,求实数的值;(II)若在区间上是减函数,且对任意的,,总有,求实数的取值范围.
设:函数在内单调递减;:曲线与轴交于不同的两点.(1)若为真且为真,求的取值范围;(2)若与中一个为真一个为假,求的取值范围.