在四棱柱中,底面,底面为菱形,为与交点,已知,.(1)求证:平面;(2)求证:∥平面;(3)设点在内(含边界),且,说明满足条件的点的轨迹,并求的最小值.
(本小题满分12分)如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E、F分别为PC和BD的中点.(1)证明:EF∥平面PAD;(2)证明:平面PDC⊥平面PAD.
(本小题满分10分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求的取值范围。
(本小题满分12分)设函数,(且)。(1)设,判断的奇偶性并证明;(2)若关于的方程有两个不等实根,求实数的范围;(3)若且在时,恒成立,求实数的范围。
(本题满分12分) 设是定义在上的增函数,令(1)求证时定值;(2)判断在上的单调性,并证明;(3)若,求证。
(本小题12分)已知函数的图象与轴相交于点M,且该函数的最小正周期为.(1)求和的值; (2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值。