(本小题满分12分)已知向量:,,函数.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)求的对称轴并作出在的图象.
已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且.(1)求数列,的通项公式;(2)记,求证:.
如图,在四棱锥中,底面,且底面为正方形,分别为的中点.(1)求证:平面;(2)求平面和平面的夹角.
设函数.(1)求函数的最小正周期和单调递增区间;(2)当时,的最大值为2,求的值,并求出的对称轴方程.
已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上.(1)求椭圆的方程;(2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
已知函数,曲线在点处的切线方程为.(1)求的值;(2)求在上的最大值.