从棱长为1的正方体的8个顶点中任取3个点,设随机变量是以这三点为顶点的三角形的面积.(1)求概率;(2)求的分布列,并求其数学期望.
已知圆:,过定点作斜率为1的直线交圆于、两点,为线段的中点.(1)求的值;(2)设为圆上异于、的一点,求△面积的最大值;(3)从圆外一点向圆引一条切线,切点为,且有 , 求的最小值,并求取最小值时点的坐标.
圆内有一点,为过点且倾斜角为的弦.(1)当时,求;(2)当弦被点平分时,求出直线的方程;(3)设过点的弦的中点为,求点的坐标所满足的关系式.
已知△中,,,平面,,、分别是、上的动点,且.(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?
已知多面体中, 四边形为矩形,,,平面平面, 、分别为、的中点,且,.(1)求证:平面;(2)求证:平面;(3)设平面将几何体分成的两个锥体的体积分别为,,求 的值.
已知函数.(1)若在上存在零点,求实数的取值范围;(2)当时,若对任意的,总存在使成立,求实数的取值范围.