已知多面体中, 四边形为矩形,,,平面平面, 、分别为、的中点,且,.(1)求证:平面;(2)求证:平面;(3)设平面将几何体分成的两个锥体的体积分别为,,求 的值.
(本小题满分14分)已知函数. (1)当,时,求的单调区间; (2)设函数在点处的切线为,直线与轴相交于点.若点的纵坐标 恒小于,求实数的取值范围.
(本小题满分14分)已知椭圆(,)的离心率,并且经过 定点. (1)求椭圆的方程; (2)问是否存在直线,使直线与椭圆交于,两点,满足?若存在,求的 值;若不存在,说明理由.
【改编】(本小题满分14分)已知数列中,,且点()均在函数的 图象上. (1)求数列的通项公式; (2)设,求数列的前项和.
(本小题满分14分)四棱锥中,底面,,,. (1)求证:平面; (2)若侧棱上的点满足,求三棱锥的体积.
【原创】(本小题满分12分)已知函数()的最小正周期为. (1)求的值; (2)若,,求的值.