(本题满分12分) (Ⅰ)从名男生和名女生中任选人去参加培训,用表示事件“其中至少有一名女生”,写出从中选取两人的所有可能取法和事件的对立事件,并求事件的概率;(Ⅱ)函数,那么任意,使函数在实数集上有零根的概率.
已知递增等比数列的前n项和为,,且. (1)求数列的通项公式; (2)若数列满足,且的前项和. 求证:
已知函数. (1)用定义证明是偶函数; (2)用定义证明在上是减函数; (3)作出函数的图像,并写出函数当时的最大值与最小值.
已知函数是定义在上的奇函数,当时,. 求出函数的解析式.
设全集,,
已知集合,若,求实数的值。