(本题满分12分) (Ⅰ)从名男生和名女生中任选人去参加培训,用表示事件“其中至少有一名女生”,写出从中选取两人的所有可能取法和事件的对立事件,并求事件的概率;(Ⅱ)函数,那么任意,使函数在实数集上有零根的概率.
某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用. (Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天? (Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值(精确到,参考数据:取).
已知二次函数. (Ⅰ)若且函数的值域为求函数的解析式; (Ⅱ)若且函数在上有两个零点,求的取值范围.
已知函数. (Ⅰ)若函数的图象在处的切线方程为求的值; (Ⅱ)若函数在上是增函数,求实数的最大值.
设命题:函数在上是增函数,命题:,如果是假命题,是真命题,求的取值范围.
已知集合,,. (Ⅰ)求集合; (Ⅱ)若,求实数的取值范围.