某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;(2)设为加工工序中产品合格的次数,求的分布列和数学期望.
(本题10分)已知抛物线C:,过原点O作抛物线C的切线使切点P在第一象限, (1)求k的值; (2)过点P作切线的垂线,求它与抛物线C的另一个交点Q的坐标。
(本题9分) 已知函数,是的导函数 (1)求函数的最小正周期; (2)若,求的值。
函数,,, (1)若在处取得极值,求的值; (2)若在其定义域内为单调函数,求的取值范围; (3)若在上至少存在一点,使得成立,求的取值范围.
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也 需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (2)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.
已知,求: (1)所有偶数项系数之和; (2).