如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
(本小题满分12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高 (单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高;(Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
(本小题满分12分)已知函数(其中,,)的最大值为2,最小正周期为.(Ⅰ)求函数的解析式及函数的增区间;(Ⅱ)若函数图象上的两点的横坐标依次为,为坐标原点,求△ 的面积.
已知曲线的参数方程是(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,正方形ABCD的顶点都在上,且A、B、C、D依逆时针次序排列,点A的极坐标为,(1)求点A、B、C、D的直角坐标;(2)设P为上任意一点,求的取值范围.
设函数()(是一个无理数)(1)若函数在定义域上不是单调函数,求a的取值范围;(2)设函数的两个极值点为和,记过点、的直线的斜率为k,是否存在a, 使得?若存在,求出a的取值集合;若不存在,请说明理由.
如图,椭圆 ()的离心率,短轴的两个端点分别为B1、B2,焦点为F1、F2,四边形F1 B1F2 B2的内切圆半径为(1)求椭圆C的方程;(2)过左焦点F1的直线交椭圆于M、N两点,交直线于点P,设,,试证为定值,并求出此定值.