如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
(本小题满分12分)如图,设为抛物线的焦点,是抛物线上一定点,其坐为 ,为线段的垂直平分线上一点,且点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.
(本小题满分11分)已知函数,其中,且曲线在点 的切线垂直于直线. (Ⅰ)求的值;(Ⅱ)求函数的单调区间和极值.
(本小题满分10分)(1)已知数列中,,求数列的前项和;(2)已知是等比数列的前项和,且公比,成等差数列,求证: 成等差数列.
(本小题满分10分)在△ABC中,分别是角A,B,C的对边.(1)求证:;(2)已知,求的值.
(本小题满分9分)设命题方程表示双曲线,命题函数有两个不同的零点,如果“”为真,且“”为假,求的取值范围.