【改编】已知圆:(1)平面上有两点,求过点两点的直线被圆截得的弦长;(2)已知过点的直线平分圆的周长,是直线上的动点,求的最大值.(3) 若是轴上的动点,分别切圆于两点.试问:直线是否恒过定点?如是,求出定点坐标,如不是,说明理由.
选修4—5:不等式选讲 已知函数。 ( I)当a=-3时,求的解集; (Ⅱ)当f(x)定义域为R时,求实数a的取值范围
已知直线的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (I)判断直线与圆C的位置关系; (Ⅱ)若点P(x,y)在圆C上,求x +y的取值范围.
如图,AB是⊙O的直径,C、E为⊙O上的点,CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延长线于D. (I)求证:DC是⊙O的切线; (Ⅱ)求证:AF.FB=DE.DA.
已知f(x)=1nx-a(x-l),a∈R (I)讨论f(x)的单调性; (Ⅱ)若x≥1时,石恒成立,求实数a的取值范围,
已知抛物线E:y2= 4x,点P(2,O).如图所示,直线.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N. (I)求y1y2的值; (Ⅱ)求讧:|PM|="|" PN|