【改编】已知圆:(1)平面上有两点,求过点两点的直线被圆截得的弦长;(2)已知过点的直线平分圆的周长,是直线上的动点,求的最大值.(3) 若是轴上的动点,分别切圆于两点.试问:直线是否恒过定点?如是,求出定点坐标,如不是,说明理由.
(本题12分)某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?
(本题12分)在△ABC中,,cosC是方程的一个根,求①角C的度数②△ABC周长的最小值。
(本题11分)已知数列的前项和为(1)求数列的通项公式;(2)若,求数列的前项和。
已知是常数),且(为坐标原点).(1)求关于的函数关系式;(2)若时,的最大值为4,求的值;(3)在满足(2)的条件下,说明的图象可由的图象如何变化而得到?
已知为的外心,以线段为邻边作平行四边形,第四个顶点为,再以为邻边作平行四边形,它的第四个顶点为.(1)若,试用表示;(2)证明:;(3)若的外接圆的半径为,用表示.