【原创】如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD ="2AE" ="2AB" =" 4CF=" 4,将四边形EFCD沿EF折起使AE=AD.(1)求证:AF∥平面CBD;(2)求几何体ADE-BCF的体积.
如图,已知海岛到海岸公路的距离为50km,间的距离为100km,从到, 必须先坐船到上的某一点,船速为,再乘汽车到,车速为,记. (1)试将由到所用的时间表示为的函数; (2)问为多少时,由到所用的时间最少?
如图,已知椭圆的右顶点为,点在椭圆上(为椭圆 的离心率). (1)求椭圆的方程; (2)若直线和椭圆交于点(在第一象限内),且点也在椭圆上,,若与 共线,求实数的值 .
正方形所在的平面与三角形所在的平面交于,且平面. (1)求证:平面; (2)求证:平面平面.
在中,角所对的边分别为,,, 且. (1)求角的值; (2)若为锐角三角形,且,求的取值范围.
某体育馆拟用运动场的边角地建一个矩形的健身室(如图所示),是一个标出为的正方形地皮,扇形是运动场的一部分,其半径为,矩形就是拟建的健身室,其中分别在和上,在上,设矩形的面积为,. (I)请将表示为的函数,并指出当点在的何处时,该健身室的面积最大,最大面积是多少? (II)由上面函数建立的思想,试求的最大值.