已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
已知f(x)=xlnx,g(x)=-x2+ax-3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (3)证明对一切x∈(0,+∞),都有lnx>-成立.
设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2. (1)求函数f(x)的表达式; (2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.
已知函数f(x)=ax2-|x|+2a-1(a为实常数). (1)若a=1,作函数f(x)的图象; (2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式; (3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.
已知函数f(x)=lg(1-x)+lg(1+x)+x4-2x2. (1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性; (3)求函数f(x)的值域.
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)). (1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t); (2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.