如图,是圆的直径,是延长线上的一点,是圆的割线,过点作的垂线,交直线于点,交直线于点,过点作圆的切线,切点为.(1)求证:四点共圆;(2)若,求的长.
已知直线过点与圆相切,(1)求该圆的圆心坐标及半径长 (2)求直线的方程
(满分12分)已知函数.(Ⅰ) 求在上的最小值;(Ⅱ) 若存在(是常数,=2.71828)使不等式成立,求实数的取值范围;(Ⅲ) 证明对一切都有成立.
(满分12分)已知点Pn(an,bn)满足an+1=an·bn+1,bn+1= (n∈N*)且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
(满分12分)已知点,直线: 交轴于点,点是上的动点,过点垂直于的直线与线段的垂直平分线交于点.(Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且 证明直线AB必过一定点,并求出该定点.
(满分12分)设函数。(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。