(满分12分)设函数。(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。
(本小题14分) 数列的前项和为,且对都有,则: (1)求数列的前三项; (2)根据上述结果,归纳猜想数列的通项公式,并用数学归纳法加以证明. (3)求证:对任意都有.
(本小题满分13分) (1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为几种? (2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种? (3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?
(本小题满分13分) 已知定义域为R的函数是奇函数. (1)求a的值;(2)判断的单调性(不需要写出理由); (3)若对任意的,不等式恒成立,求的取值范围.
(本小题满分13分) 由0,1,2,3,4,5这六个数字 (1)能组成多少个无重复数字的四位数? (2)能组成多少个无重复数字的四位偶数? (3)能组成多少个无重复数字且被25整除的四位数? (4)组成无重复数字的四位数中比4032大的数有多少个?
(本小题满分12分) 已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1 (1)求的解析式; (2)求函数的单调递减区间及值域..