设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.(1)求函数f(x)的解析式;(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦;(III)求点E到平面ACD的距离.
已知数列是首项为,公比的等比数列,,设,数列.(1)求数列的通项公式;(2)求数列的前n项和Sn.
已知函数.(1)若使,求实数的取值范围;(2)设,且在上单调递增,求实数的取值范围.
已知,,(1)若f(x)在处取得极值,试求c的值和f(x)的单调增区间;(2)如右图所示,若函数的图象在连续光滑,试猜想拉格朗日中值定理:即一定存在使得?(用含有a,b,f(a),f(b)的表达式直接回答)(3)利用(2)证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.
(本小题满分14分)已知10件产品中有3件是次品.(I)任意取出3件产品作检验,求其中至少有1件是次品的概率;(II)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?