已知正项数列的前项和为,且和满足:.(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值.
(本小题满分12分) 已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)。 (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)> ; (Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。
(本小题满分12分) 设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点。 (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值。
(本小题满分12分) 已知数列满足,,设数列的前n项和为,令。 (Ⅰ)求数列的通项公式;(Ⅱ)求证:。
(本小题满分12分) 如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (Ⅰ)证明:; (Ⅱ)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
(本小题满分12分) 某大学对参加了“世博会”的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分。假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立。 (Ⅰ)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率; (Ⅱ)记这这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量x,求随机变量x的分布列和数学期望Ex。