如图,正三棱柱的底面边长是,侧棱长是,是的中点.(1)求证:∥平面;(2)求二面角的大小;(3)在线段上是否存在一点,使得平面平面,若存在,求出的长;若不存在,说明理由.
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=.(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,-最大?
已知圆C的圆心为(0,1),直线与圆C相交于A,B两点,且,则圆C的半径为.
已知函数. (1)讨论函数在定义域内的极值点的个数;(2)已知函数在处取得极值,且对恒成立,求的取值范围.
已知椭圆与轴、轴的正半轴分别交于两点,原点到直线的距离为,该椭圆的离心率为.(1)求椭圆的方程;(2)是否存在过点的直线与椭圆交于两个不同的点,使成立?若存在,求出的方程;若不存在,说明理由.
如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明://平面;(2)设,三棱锥的体积,求到平面的距离.