设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.(I)用a分别表示b和c;(II)当bc取得最大值时,写出的解析式;(III)在(II)的条件下,若函数g(x)为偶函数,且当时,,求当时g(x)的表达式,并求函数g(x)在R上的最小值及相应的x值.
(满分12分)已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成的角; (Ⅲ)求面与面所成二面角的余弦值。
.4.命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围。
(本小题满分14分) 设函数对任意实数都有且时。 (Ⅰ)证明是奇函数; (Ⅱ)证明在内是增函数; (Ⅲ)若,试求的取值范围。
(本小题满分14分)如图, 在正方体中,棱长是1, (1)求证:; (2)求点的距离。
(本小题满分14分) 已知直线的方程是,点。 (1) 求过点且与平行的直线方程 (2)求过点且与垂直的直线方程