如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求证:;(3)求与平面所成角的正弦值。
(选修4—5:不等式选讲) 已知正实数满足. 求证:
(选修4—4:坐标系与参数方程) 在极坐标系中,已知点的极坐标为,圆的极坐标方程为, 试判断点和圆的位置关系
(选修4—2:矩阵与变换) 设矩阵的一个特征值为,若曲线在矩阵变换下的方程为,求曲线的方程.
(选修4—1:几何证明选讲) 如图,为⊙的直径,直线与⊙相切于点,,,、为垂足,连接. 若,,求的长.
设数列共有项,记该数列前项中的最大项为,该数列后项中的最小项为,. (1)若数列的通项公式为,求数列的通项公式; (2)若数列满足,,求数列的通项公式; (3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.