如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求证:;(3)求与平面所成角的正弦值。
(理科)如图,直线与椭圆交于A、B两点,记的面积为。(Ⅰ)求在,的条件下,的最大值;(Ⅱ)当时,求直线AB的方程。
(理科)已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的距离为。(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。
(文科)已知△OFQ的面积为,=m. (1)设,求∠OFQ正切值的取值范围; (2)设以O为中心,F为焦点的双曲线经过点Q(如图), ,当 取得最小值时,求此双曲线的方程.
(文科)已知中心在原点,焦点在x轴上的椭圆的离心率为,为其焦点,一直线过点与椭圆相交于两点,且的最大面积为,求椭圆的方程。
(理科)在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO.求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;