对于函数().(1)探索并证明函数的单调性;(2)是否存在实数使函数为奇函数?若有,求出实数的值,并证明你的结论;若没有,说明理由.
(本小题满分13分)设数列的前项和为,且;数列为等差数列,且,.(1)求数列和的通项公式; (2)若,为数列的前项和.求证:.
(本小题满分12分)某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒) .(1)将y表示为x的函数;(2)求车队通过隧道所用时间取最小值时车队的速度.
(本小题满分12分)如图,正方形所在的平面与平面垂直,是和的交点,,且.
(1)求证:平面;
设点在直线上,求证这条直线的方程 可以写成.
设,,求证: (1)平行于直线的直线方程,可表示为的形式; (2)垂直于直线的直线方程可表示为的形式.