已知椭圆:()的离心率,左、右焦点分别为,点,点在线段的中垂线上.(1)求椭圆的方程;(2)设直线:与椭圆交于、两点,直线与的倾斜角分别为、,且,求证:直线经过定点,并求该定点的坐标
已知点(Ⅰ)若,求的值;(Ⅱ)若,其中为坐标原点,求的值
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.
已知函数f(x)=lnx-ax-3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若对于任意的a∈[1,2],函数在区间(a,3)上有最值,求实数m的取值范围.
已知数列{bn}是等差数列, b1="1," b1+b2+b3+…+b10=100.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)设数列{an}的通项记Tn是数列{an}的前n项之积,即Tn= b1·b 2·b 3…bn,试证明:
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动)(Ⅰ)求某个家庭得分为(5,3)的概率;(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.