已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.(1)求椭圆的标准方程;(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
(本小题满分12分)某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.
(1)请完成上面的2´2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改 有关”; (2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4 人中的优秀人数为x,若每次抽取的结果是相互独立的,求x的分布列及数学期望Ex.
(本小题满分12分)已知函数. (1)求函数的最小正周期; (2)若,,求的值.
(本小题12分)第(1)小题5分,第(2)题7分 已知中心在原点,左焦点为的椭圆C的左顶点为,上顶点为,到直线的距离为. (1)求椭圆C的方程; (2)若椭圆方程为:(),椭圆方程为:(,且),则称椭圆是椭圆的倍相似椭圆.已知是椭圆C的倍相似椭圆,若椭圆C的任意一条切线交椭圆于两点、,试求弦长的取值范围.
(本小题12分)第(1)小题5分,第(2)题7分 在平面直角坐标系中,点,直线,设圆的半径为,圆心在上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程; (2)若圆上存在点,使,求圆心的横坐标的取值范围.
(本小题12分)第(1)小题5分,第(2)题7分 如图,在四棱锥中中,底面为菱形,,,点在线段上,且,为的中点. (1)求证:平面; (2)若平面平面,求三棱锥的体积;