已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.(1)求椭圆的标准方程;(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
单调函数, .(1)证明:f(0)=1且x<0时f(x)>1;(2)
已知二次函数(其中)(1)试讨论函数的奇偶性.(2)当为偶函数时,若函数,试证明:函数在上单调递减,在上单调递增;
已知函数(1)证明:函数f(x)是奇函数. (2)证明:对于任意的非零实数恒有x f(x)<0成立.
设集合,.(1)求集合;(2)若不等式的解集为,求,的值.
知,,(1)求的值.(2)x1、x2、…x2010均为正实数,若函数f(x)=logax(a>0且a≠1)且f(x1x2…x2010)=,求f()+f()+…+f()的值