为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的 1 2 、 1 3 、 1 6 .现有3名工人独立地从中任选一个项目参与建设.求: (I)他们选择的项目所属类别互不相同的概率; (II)至少有1人选择的项目属于民生工程的概率.
已知双曲线C1:(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。(1)求证:C1,C2总有两个不同的交点;(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。
如图,已知矩形ABCD中,AB=1,BC=,PA平面ABCD,且PA=1。(1)问BC边上是否存在点Q,使得PQQD?并说明理由;(2)若边上有且只有一个点Q,使得PQQD,求这时二面角Q的正切。
已知函数f(x)=的图像在点(为自然常数)处的切线斜率为3.(Ⅰ)求实数的值(Ⅱ)若,且对任意的恒成立,求得最大值(Ⅲ)当时,证明
已知函数(Ⅰ)求的单调区间;(Ⅱ)若,,求的取值范围.
设函数,且为的极值点. (Ⅰ) 若为的极大值点,求的单调区间(用表示); (Ⅱ)若恰有1解,求实数的取值范围.