已知双曲线C1:(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。(1)求证:C1,C2总有两个不同的交点;(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。
四棱锥P—ABCD中,底面ABCD是一个平行四边形,={2,-1,-4},={4,2,0},={-1,2,-1}. (1)求证:PA⊥底面ABCD; (2)求四棱锥P—ABCD的体积; (3)对于向量={x1,y1,z1},={x2,y2,z2},={x3,y3,z3},定义一种运算: (×)·=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(×)·的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义..
若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.
如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°. (1)求向量的坐标; (2)设向量和的夹角为θ,求cosθ的值
如图,已知正方体的棱长为a,M为的中点,点N在'上,且,试求MN的长.
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,. (Ⅰ)求的取值范围; (Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值.(14分)