(本小题满分12分,(1)小问3分,(2)小问4分,(3)小问5分)对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1)判断函数是否为 “()型函数”,并说明理由;(2)若函数是“()型函数”,求出满足条件的一组实数对;(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时,,若当时,都有,试求的取值范围.
已知:“直线与圆相交”;:“方程的两根异号”.若为真,为真,求实数的取值范围.
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知椭圆过点离心率, (1)求椭圆方程; (2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.
如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点. 求证:(1)平面; (2)求二面角的余弦值.
已知双曲线的焦点为,且离心率为2; (1)求双曲线的标准方程; (2)若经过点的直线交双曲线于两点,且为的中点,求直线的方程.