已知双曲线的焦点为,且离心率为2;(1)求双曲线的标准方程;(2)若经过点的直线交双曲线于两点,且为的中点,求直线的方程.
已知函数.(Ⅰ)若函数在,处取得极值,求,的值;(Ⅱ)若,函数在上是单调函数,求的取值范围.
已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。(Ⅰ)求椭圆E的标准方程; (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
右图为一组合体,其底面为正方形,平面,,且(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积;(Ⅲ)求该组合体的表面积.
已知递增的等比数列满足是的等差中项。(Ⅰ)求数列的通项公式;(Ⅱ)若是数列的前项和,求
选修4—5;不等式选讲.设函数. (Ⅰ)解不等式;(Ⅱ)对于实数,若,求证.