如图,在斜三棱柱中,O是AC的中点,平面,,.(1)求证:平面;(2)求二面角的余弦值.
已知数列是递增的等比数列,满足,且是.的等差中项,数列满足,其前n项和为,且. (1)求数列,的通项公式; (2)数列的前n项和为,若不等式对一切恒成立,求实数的取值范围.
已知点A,B的坐标分别是,,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1. (1)过点M的轨迹C的方程; (2)过原点作两条互相垂直的直线.分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.
在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2. (1)证明DF⊥平面ABE; (2)求二面角A-BD-E的余弦值.
在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列. (1)若b=,a=3,求c的值; (2)设t=sinAsinC,求t的最大值.
已知定义域为的函数是奇函数. (Ⅰ)求的值; (Ⅱ)判断函数的单调性,并用定义证明; (Ⅲ)若对任意的,不等式恒成立,求实数的取值 范围.