如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.
已知数列的前项和为,且对一切正整数都成立.(Ⅰ)求,的值;(Ⅱ)设,数列的前项和为,当为何值时,最大?并求出的最大值.
已知函数.(Ⅰ)求的值域;(Ⅱ)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,,,求的值.
设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.
设函数f(x)=x2+|x-2|-1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值.