某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°. (1)求∠BAC的度数. (2)若AC=2,求AD的长.
如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是AD、BC、BE、CE的中点 (1)求证:△ABE≌△DCE (2)四边形EGFH是什么特殊四边形?并证明你的结论. (3)连接EF,当四边形EGFH是正方形时,线段EF与GH有什么数量关系?请说明理由.
(1)计算:. (2)先化简,在求值:,其中,.
列方程组或不等式解应用题 在数字化校园建设工程中,某学校计划购进一批笔记本电脑和台式机,经过市场调研得知如下信息:购买1台笔记本和2台台式机需付费1.4万元;购买2台笔记本和1台台式机需付费1.3万元. (1)求购买一台笔记本和一台台式机各需多少钱(单位:万元)? (2)根据学校实际情况,计划购进笔记本和台式机共20台.其中,台式机至少10台,笔记本至少8台.请你通过计算求出有几种购买方案,说明哪种费用最低.
阅读学习: 数学中有很多等式可以用图形的面积来表示.如图1,它表示, (1)观察图2,请你写出之间的关系________________________. (2)小明用8个一样大的长方形,(长为a,宽为b),拼成了如图甲乙两种图案,图案甲是一个正方形,图案甲中间留下了一个边长为2的正方形;图形乙是一个长方形.则="___________"