某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
如图,已知 AC 、 AD 是 ⊙ O 的两条割线, AC 与 ⊙ O 交于 B 、 C 两点, AD 过圆心 O 且与 ⊙ O 交于 E 、 D 两点, OB 平分 ∠ AOC .
(1)求证: ΔACD ∽ ΔABO ;
(2)过点 E 的切线交 AC 于 F ,若 EF / / OC , OC = 3 ,求 EF 的值. [ 提示: ( 2 + 1 ) ( 2 − 1 ) = 1 ]
一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号
一
二
三
四
五
人数
a
15
20
10
b
已知前面两个小组的人数之比是 1 : 5 .
解答下列问题:
(1) a + b = .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
如图,菱形 ABCD 中,作 BE ⊥ AD 、 CF ⊥ AB ,分别交 AD 、 AB 的延长线于点 E 、 F .
(1)求证: AE = BF ;
(2)若点 E 恰好是 AD 的中点, AB = 2 ,求 BD 的值.
如图,已知平行四边形 OABC 中,点 O 为坐标原点,点 A ( 3 , 0 ) , C ( 1 , 2 ) ,函数 y = k x ( k ≠ 0 ) 的图象经过点 C .
(1)求 k 的值及直线 OB 的函数表达式:
(2)求四边形 OABC 的周长.