在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.
已知正比例函数反比例函数由构造一个新函数其图象如图所示.(因其图象似双钩,我们称之为“双钩函数” ).给出下列几个命题:①该函数的图象是中心对称图形;②当时,该函数在时取得最大值-2; ③的值不可能为1; ④在每个象限内,函数值随自变量的增大而增大. 其中正确的命题是 .(请写出所有正确的命题的序号)
如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.(1)求直线与抛物线的表达式;(2)求证:C点是△AOD的外心;(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的?若存在,求出动点P的位置;若不存在,请说出理由.
如图,矩形ABCD中,P是边AD上的一动点,连接BP、CP,过点B作射线交线段CP的延长线于点E,交AD边于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.(1)说明△ABM∽△APB;并求出y关于x的函数关系式,写出自变量x的取值范围;(2)当AP=4时,求sin∠EBP的值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长。
实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=–200x2+400x表示;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)表示(如图所示).(1)喝酒后多长时间血液中的酒精含量达到最大值?最大值为多少?(2)当=5时,y=45.求k的值.(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)若⊙O的半径为cm,弦BD的长为3 cm,求CF的长.