有形状、大小和质地都相同的四张卡片,正面分别写有错误!未找到引用源。和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A,B,C,D表示).(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利?为什么?
若关于的一元二次方程有实数根.⑴求的取值范围.⑵若中,的长是方程的两根,求的长.
如图,为的切线,为切点,于点,交于,平分.求的度数.
如图,在直角坐标系中,的两条直角边分别在轴的负半轴,轴的负半轴上,且.将绕点按顺时针方向旋转,再将所得的图象沿轴正方向平移个单位,得.⑴写出点的坐标;⑵求点和点之间的距离.
用适当的方法解一元二次方程:⑴⑵
电焊工想利用一块边长为的正方形钢板做成一个扇形,于是设计了以下三种方案: 方案一:如图1,直接从钢板上割下扇形. 方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3). 方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形. 图1图2图3图4(1)容易得出图1、图3中所得扇形的圆心角均为,那么按方案三所焊接成的大扇形的圆心角也为吗?为什么?(2)容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?(3)若将正方形钢板按类似图4的方式割成个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这个小扇形按类似方案三的方式焊接成一个大扇形,则当逐渐增大时,所焊接成的大扇形的面积如何变化?