设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.
(本小题14分) 已知满足ax·f(x)=2bx+f(x), a≠0, f(1)=1且使成立的实数x有且只有一个.(1)求的表达式;(2)数列满足:, 证明:为等比数列.(3)在(2)的条件下, 若, 求证:
(本小题13分) 如图所示, PQ为平面的交线, 已知二面角为直二面角, , ∠BAP=45°. (1)证明: BC⊥PQ; (2)设点C在平面内的射影为点O, 当k取何值时, O在平面ABC内的射影G恰好为△ABC的重心?(3)当时, 求二面角B-AC-P的大小.
(本小题12分)已知: 以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A, 与y轴交于点O, B, 其中O为原点. (1)求证:△OAB的面积为定值;(2)设直线y = –2x+4与圆C交于点M, N, 若OM = ON, 求圆C的方程.
(本小题12分) 如图,四棱锥P-ABCD的底面是正方形, PA⊥底面ABCD, PA=2, ∠PDA="45°," 点E、F分别为棱AB、PD的中点. (1)求证: AF∥平面PCE; (2)求证: 平面PCE⊥平面PCD; (3)求AF与平面PCB所成的角的大小.
(本小题12分) 已知两条直线l1: ax-by+4=0和l2: (a-1)x+y+b="0," 求满足下列条件的a, b的值.(1)l1⊥l2, 且l1过点(-3, -1);(2)l1∥l2, 且坐标原点到这两条直线的距离相等.