如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.
如图是一个奖杯的三视图(单位:),底座是正四棱台. (1)求这个奖杯的体积;(计算结果保留) (2)求这个奖杯底座的侧面积.
已知,求的最小值与最大值.
设函数. (1)解不等式; (2)当时,证明:.
已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为. (1)将曲线C的极坐标方程化为直坐标方程; (2)设点M的直角坐标为,直线与曲线C的交点为A、B,求的值.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且. (1)证明:; (2)延长CD到F,延长DC到G,使得,证明:A,B,G,F四点共圆.