已知 m 是非零实数,抛物线 C : y 2 = 2 p s ( p > 0 ) 的焦点 F 在直线 l : x - m y - m 2 2 = 0 上. (I)若 m = 2 ,求抛物线 C 的方程 (II)设直线 l 与抛物线 C 交于 A 、 B , ∆ A A 2 F , ∆ B B 1 F ,的重心分别为 G , H .求证:对任意非零实数 m ,抛物线 C 的准线与 x 轴的焦点在以线段 G H 为直径的圆外.
(本小题满分12分)张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:) (1)求的解析式; (2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)
如图,在四棱锥A—BCDE中,底面BCDE为矩形,AB=AC,BC=2,CD=1,并且侧面底面BCDE。 (1)取CD的中点为F,AE的中点为G,证明:FG//面ABC; (2)试在线段BC上确定点M,使得AEDM,并加以证明。
(本小题满分12分)已知函数满足. (1)求常数的值;(2)解不等式.
(本小题满分12分)已知向量. (1)若,求的值; (2)记,在△ABC中,角的对边分别是且满足,求函数f(A)的取值范围.
(本小题满分13分) 已知函数是函数的极值点。 (I)求实数a的值,并确定实数m的取值范围,使得函数有两个零点; (II)是否存在这样的直线,同时满足:①是函数的图象在点处的切线②与函数的图象相切于点,如果存在,求实数b的取值范围;不存在,请说明理由。