某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
在△ABC中,BC=a,AC=b;a,b是方程的两个根,且。求:(1)角C的度数; (2)AB的长度。
有四个数:前三个成等差数列,后三个成等比数列。首末两数和为16,中间两数和为12。求这四个数。
如图,三棱柱中,侧面底面,,且,O为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与平面所成角的正弦值
袋子中装有编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球. (Ⅰ)写出所有不同的结果; (Ⅱ)求恰好摸出1个黑球和1个红球的概率; (Ⅲ) 求至少摸出1个黑球的概率.
已知数列{an}各项均为正数,Sn为其前n项和,对于,总有成等差数列. (I )求数列{an}的通项an; (II)设数列的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:时,; (III)对任意,试比较与的大小