设函数在定义域是奇函数,当时,.(1)当,求;(2)对任意,,不等式都成立,求的取值范围.
(本小题满分12分)根据上述不等式,请你推出一般的结论并证明你的结论。
(本小题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验;(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程。(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:)
(本小题满分10分)已知是复数,,均为实数(为虚数单位)且复数在复平面上对应的点在第一象限,求复数及实数的取值范围。
(本小题满分12分) 已知函数,,()(1)问取何值时,方程在上有两解;(2)若对任意的,总存在,使成立,求实数的取值范围?
(本小题满分12分)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票。股民老赵在研究股票的走势图时,发现一只股票的MA均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线对称。老赵预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F。现在老赵决定取点,点,点来确定解析式中的常数,并且已经求得。(1)请你帮老赵算出,并回答股价什么时候见顶(即求F点的横坐标);(2)老赵如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?