设,分别是椭圆:的左、右焦点,过作倾斜角为的直线交椭圆于,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.(1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过、两点的直线交轴于点,若, 求的取值范围;(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.
数列满足: 证明:(1)对任意为正整数;(2)对任意为完全平方数。
数列定义如下:,且当时, 已知,求正整数n.
)设数列满足条件:,且) 求证:对于任何正整数n,都有
已知数列满足,,,其中是给定的实数,是正整数,试求的值,使得的值最小.
将等差数列{}:中所有能被3或5整除的数删去后,剩下的数自小到大排成一个数列{},求的值.