一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.
如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于,两点. (1)如果、两点的纵坐标分别为、,求和; (2)在(1)的条件下,求的值; (3)已知点,求函数f()=的值域.
在△ABC中,角A、B、C所对的边分别为a,b,c,且满足csinA=acosC. (1)求角C的大小; (2)求sinA+cosA的最大值,并求取得最大值时角A,B的大小
已知tan、tan是的两个根 (1)求tan() (2)求sin-3sin()cos()-3cos的值。
已知cos=-,求cos(),
设,函数. (1)若函数在的最小值为-2,求a的值; (2)若函数在上是单调减函数,求实数的取值范围.