(本小题共14分)如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面; (Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
已知数列{an}中,a1=,an+1=(n∈N*).(1)求证:数列{}是等差数列,并求{an}的通项公式;(2)设bn+an=l(n∈N*),S=b1b2+b2b3+…+bnbn+1,试比较an与8Sn的大小.
已知向量,,。(1)求的值; (2)若且,求的值。
在△ABC中,内角A,B,C的对边分别为a,b,c,若b=1,c=.(Ⅰ)求角C的取值范围;(Ⅱ)求4sinCcos(C)的最小值.
已知函数,.(Ⅰ)若有且仅有两个不同的解,求的值;(Ⅱ)若当时,不等式恒成立,求实数的取值范围;(Ⅲ)若时,求在上的最大值.
已知抛物线:的准线与轴交于点,为抛物线的焦点,过点斜率为的直线与抛物线交于、两点.(Ⅰ)若,求的值;(Ⅱ)是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.