本题满分14分)为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm)在的概率;(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.
已知函数的最大值为2. (1)求函数在的单调递增区间; (2)△ABC中,,角A、B、C所对的边分别是a、b、c,且C=60,c=3,求的值.
选修4-5:不等式选讲 设函数=,.不等式的解集为. (1)求; (2)若存在,使得,求实数的取值范围;
(本小题满分10分)选修:4-4:坐标系与参数方程 已知:圆的参数方程为,圆的极坐标方程为, (1)求圆的普通方程与圆的直角坐标方程; (2)若圆与圆外切,求实数的值;
(本小题满分10分)选修4-1:几何证明选讲 如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明: AD·DE=2PB2.
已知函数 (Ⅰ)若函数在上位增函数,求的取值范围. (Ⅱ) 求在区间上的最小值; (Ⅲ) 若在区间上恰有两个零点,求的取值范围.