(本题满分15分) 已知a、b∈(0,+∞),且a+b=1,求证:(1) ab≤ (2)+≥8; (3) + ≥. (5分+5分+5分)
已知 (Ⅰ)求函数的单调递增区间; (Ⅱ)设,且,求.
(本小题满分7分)选修4—5:不等式选讲 已知函数的最小值为3. (Ⅰ)求实数的取值范围; (Ⅱ)若,且,求证.
以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程是(为参数),圆的极坐标方程是. (Ⅰ)求直线的方程和圆的直角坐标方程; (Ⅱ)求直线被圆截得的弦长.
(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵A满足:. (Ⅰ)求矩阵A; (Ⅱ)求矩阵A的特征值以及对应到一个特征向量;
(本小题13分)已知定义在的奇函数满足:①;②对任意均有;③对任意,均有. (Ⅰ)求的值; (Ⅱ)证明:在上为增函数; (Ⅲ)是否存在实数k,使得对任意的恒成立?若存在,求出的k范围;若不存在说明理由.