甲、乙两大超市同时开业,第一年的全年销售额均为a万元,由于经营方式不同,甲超市前n年的总销售额为(n2-n+2)万元,乙超市第n年的销售额比前一年销售额多a万元.(1)设甲、乙两超市第n年的销售额分别为an、bn,求an、bn的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?
已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点、,点在轴上方,直线与抛物线相切. (1)求抛物线的方程和点、的坐标; (2)设A,B是抛物线C上两动点,如果直线,与轴分别交于点. 是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
如图,过点P(1,0)作曲线C:的切线,切点为,设点在轴上的投影是点;又过点作曲线的切线,切点为,设在轴上的投影是;………;依此下去,得到一系列点,设点的横坐标为. (1)求直线的方程; (2)求数列的通项公式; (3)记到直线的距离为,求证:时,
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点. (1)求证:DC平面ABC; (2)求BF与平面ABC所成角的正弦值; (3)求二面角B-EF-A的余弦值.
甲、乙两人在罚球线互不影响地投球,命中的概率分别为与,投中得1分,投不中得0分. (1)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望; (2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.
的三个内角对应的三条边长分别是,且满足 (1)求的值; (2)若, ,求和的值.