设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
已知函数在点处有极小值-1,(1)试确定、的值,(2)并求出的单调区间。
已知:A、B是ABC的两个内角,, 其中、为相互垂直的单位矢量.若 | | =,试求tanA·tanB的值.
当m为何实数时,复数z=+(m2+3m-10)i;(1)是实数;(2)是虚数;(3)是纯虚数.
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3. (1)求a、b的值; (2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立; 令.是否存在一个实数t,使得当时,g(x)有最大值1?