设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
(本小题满分12分) 已知椭圆:. (Ⅰ)若椭圆的一个焦点到长轴的两个端点的距离分别为和,求椭圆的方程;
(本小题满分12分) 已知数列是首项为,公比的等比数列,设,数列满足. (Ⅰ)求的通项公式; (Ⅱ)若对一切正整数恒成立,求实数的取值范围.
(本小题满分12分) 已知函数f(x)=x3-ax2,其中a为实常数. (1)设当x∈(0,1)时,函数y = f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围 (2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.
(本小题满分12分) 四棱锥的底面是正方形,侧棱的中点在底面内的射影恰好是正方形的中心,顶点在截面内的射影恰好是的重心. (1)求直线与底面所成角的正切值; (2)设,求此四棱锥过点的截面面积.
(本小题满分12分) 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。 (Ⅰ)求三位同学都没有中奖的概率; (Ⅱ)求三位同学中至少有两位没有中奖的概率.