已知在半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.
(本小题满分12分) 如图,P是正三角形ABC所在平面外一点,M、N分别是AB和PC的中点,且PA=PB=PC=AB=a。 (1)求证:MN是AB和PC的公垂线 (2)求异面直线AB和PC之间的距离
(本小题满分10分) 已知向量 (1)若,求的值; (2)若求的值。
((本题16分) (1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案? (2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花. ①求恰有两个区域用红色鲜花的概率; ②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).
((本题16分) 已知(常数) (1)若求:①;② (2)若展开式中不含x的项的系数的绝对值之和为729,不含y项的系数的绝对值之和为64,求n的所有可能值。
((本题15分) 两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是, (1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (3)两人各射击5次,是否有99%的把握断定他们至少中靶一次?