已知在半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.
已知的最小正周期为. (1)当时,求函数的最小值; (2)在,若,且,求的值.
在个实数组成的行列数表中,先将第一行的所有空格依次填上,,,再将首项为公比为的数列依次填入第一列的空格内,然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规律填写其它空格
(1)设第2行的数依次为.试用表示的值; (2)设第3行的数依次为,记为数列. ①求数列的通项; ②能否找到的值使数列的前项()成等比数列?若能找到,的值是多少?若不能找到,说明理由.
已知椭圆的离心率,长轴的左右端点分别为,. (1)求椭圆的方程; (2)设动直线与曲线有且只有一个公共点,且与直线相交于点. 求证:以为直径的圆过定点.
已知函数,(其中常数) (1)当时,求曲线在处的切线方程; (2)若存在实数使得不等式成立,求的取值范围.
如图在四棱锥中,底面是矩形,平面,,点是中点,点是边上的任意一点. (1)当点为边的中点时,判断与平面的位置关系,并加以证明; (2)证明:无论点在边的何处,都有; (3)求三棱锥的体积.