设函数f(x)=(x2+ax+b)ex(x∈R).(1)若a=2,b=-2,求函数f(x)的极大值;(2)若x=1是函数f(x)的一个极值点.①试用a表示b;②设a>0,函数g(x)=(a2+14)ex+4.若ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,. (1)当时,求的大小; (2)求的面积S的最小值及使得S取最小值时的值.
已知函数,. (1)若的极大值为,求实数的值; (2)若对任意,都有恒成立,求实数的取值范围; (3)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)= f(x0)+ f(k)(k为常数),则称“f(x)关于k可线性分解”. 设,若关于实数a 可线性分解,求取值范围.
已知正项数列中,其前项和为,且. (1)求数列的通项公式; (2)设,,求证:; (3)设为实数,对任意满足成等差数列的三个不等正整数,不等式都成立,求实数的取值范围.
已知椭圆的离心率为,过的左焦点的直线被圆截得的弦长为. (1)求椭圆的方程; (2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
(本题满分14分) 如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面面,是中点. (1) 证明:∥平面; (2) 求三棱锥的体积. 图1 图2